在滴滴的两年一直在加班,人也变懒了,就很少再写博客了,最近在进行Carbondata和hive集成方面的工作,于是乎需要对Carbondata进行深入的研究。
于是新开一个系列,记录自己学习Carbondata的点点滴滴。
1、环境准备
当前版本是1.2.0-SNAPSHOT
git clone https://github.com/apache/carbondata.git
先用IDEA打开carbondata的代码,点击上方的View -> Tool Windows -> Maven Projects, 先勾选一下需要的profile和编译format工程,如下图所示:
2、探寻代码入口
我们先打开入口类CarbonDataFrameWriter,找到writeToCarbonFile这个方法
private def writeToCarbonFile(parameters: Map[String, String] = Map()): Unit = { val options = new CarbonOption(parameters) val cc = CarbonContext.getInstance(dataFrame.sqlContext.sparkContext) if (options.tempCSV) { loadTempCSV(options, cc) } else { loadDataFrame(options, cc) } }
它有两个方式,loadTempCSV和loadDataFrame。
loadTempCSV是先生成CSV文件,再调用LOAD DATA INPATH...的命令导入数据。
这里我们之研究loadDataFrame这种直接生成数据的方式。
一路点进去,目标落在carbonTableSchema的LoadTable的run方法里,接着就是洋洋洒洒的二百行的set代码。它是核心其实是构造一个CarbonLoadModel类。
val carbonLoadModel = new CarbonLoadModel() carbonLoadModel.setTableName(relation.tableMeta.carbonTableIdentifier.getTableName) carbonLoadModel.setDatabaseName(relation.tableMeta.carbonTableIdentifier.getDatabaseName) carbonLoadModel.setStorePath(relation.tableMeta.storePath) val table = relation.tableMeta.carbonTable carbonLoadModel.setAggTables(table.getAggregateTablesName.asScala.toArray) carbonLoadModel.setTableName(table.getFactTableName) val dataLoadSchema = new CarbonDataLoadSchema(table) // Need to fill dimension relation carbonLoadModel.setCarbonDataLoadSchema(dataLoadSchema)
这些代码为了Load一个文本文件准备的,如果是用dataframe的方式则不需要看了。直接略过,直接调到if (carbonLoadModel.getUseOnePass)这一句。
这个跟字典的生成方式有关,这个值默认是false,先忽略true的过程吧,看主流程就行,下面这哥俩才是我们要找的。
// 生成字典文件 GlobalDictionaryUtil .generateGlobalDictionary( sparkSession.sqlContext, carbonLoadModel, relation.tableMeta.storePath, dictionaryDataFrame) // 生成数据文件 CarbonDataRDDFactory.loadCarbonData(sparkSession.sqlContext, carbonLoadModel, relation.tableMeta.storePath, columnar, partitionStatus, None, loadDataFrame, updateModel)
3、字段生成过程
先看GlobalDictionaryUtil.generateGlobalDictionary方法
if (StringUtils.isEmpty(allDictionaryPath)) { LOGGER.info("Generate global dictionary from source data files!") // load data by using dataSource com.databricks.spark.csv var df = dataFrame.getOrElse(loadDataFrame(sqlContext, carbonLoadModel)) var headers = carbonLoadModel.getCsvHeaderColumns headers = headers.map(headerName => headerName.trim) val colDictFilePath = carbonLoadModel.getColDictFilePath if (colDictFilePath != null) { // generate predefined dictionary generatePredefinedColDictionary(colDictFilePath, carbonTableIdentifier, dimensions, carbonLoadModel, sqlContext, storePath, dictfolderPath) } if (headers.length > df.columns.length) { val msg = "The number of columns in the file header do not match the " + "number of columns in the data file; Either delimiter " + "or fileheader provided is not correct" LOGGER.error(msg) throw new DataLoadingException(msg) } // use fact file to generate global dict val (requireDimension, requireColumnNames) = pruneDimensions(dimensions, headers, df.columns) if (requireDimension.nonEmpty) { // select column to push down pruning df = df.select(requireColumnNames.head, requireColumnNames.tail: _*) val model = createDictionaryLoadModel(carbonLoadModel, carbonTableIdentifier, requireDimension, storePath, dictfolderPath, false) // combine distinct value in a block and partition by column val inputRDD = new CarbonBlockDistinctValuesCombineRDD(df.rdd, model) .partitionBy(new ColumnPartitioner(model.primDimensions.length)) // generate global dictionary files val statusList = new CarbonGlobalDictionaryGenerateRDD(inputRDD, model).collect() // check result status checkStatus(carbonLoadModel, sqlContext, model, statusList) } else { LOGGER.info("No column found for generating global dictionary in source data files") } } else { generateDictionaryFromDictionaryFiles(sqlContext, carbonLoadModel, storePath, carbonTableIdentifier, dictfolderPath, dimensions, allDictionaryPath) }
包含了两种情况:不存在字典文件和已存在字段文件。
先看不存在的情况
// use fact file to generate global dict val (requireDimension, requireColumnNames) = pruneDimensions(dimensions, headers, df.columns) if (requireDimension.nonEmpty) { // 只选取标记为字典的维度列 df = df.select(requireColumnNames.head, requireColumnNames.tail: _*) val model = createDictionaryLoadModel(carbonLoadModel, carbonTableIdentifier, requireDimension, storePath, dictfolderPath, false) // 去重之后按列分区 val inputRDD = new CarbonBlockDistinctValuesCombineRDD(df.rdd, model) .partitionBy(new ColumnPartitioner(model.primDimensions.length)) // 生成全局字段文件 val statusList = new CarbonGlobalDictionaryGenerateRDD(inputRDD, model).collect() // check result status checkStatus(carbonLoadModel, sqlContext, model, statusList) } else { LOGGER.info("No column found for generating global dictionary in source data files") }
先从源文件当中读取所有维度列,去重之后按列分区,然后输出,具体输出的过程请看CarbonGlobalDictionaryGenerateRDD的internalCompute方法。
val dictWriteTask = new DictionaryWriterTask(valuesBuffer, dictionaryForDistinctValueLookUp, model.table, model.columnIdentifier(split.index), model.hdfsLocation, model.primDimensions(split.index).getColumnSchema, model.dictFileExists(split.index) ) // execute dictionary writer task to get distinct values val distinctValues = dictWriteTask.execute() val dictWriteTime = System.currentTimeMillis() - t3 val t4 = System.currentTimeMillis() // if new data came than rewrite sort index file if (distinctValues.size() > 0) { val sortIndexWriteTask = new SortIndexWriterTask(model.table, model.columnIdentifier(split.index), model.primDimensions(split.index).getDataType, model.hdfsLocation, dictionaryForDistinctValueLookUp, distinctValues) sortIndexWriteTask.execute() } val sortIndexWriteTime = System.currentTimeMillis() - t4 CarbonTimeStatisticsFactory.getLoadStatisticsInstance.recordDicShuffleAndWriteTime() // After sortIndex writing, update dictionaryMeta dictWriteTask.updateMetaData()
字典文件在表目录的下的Metadata目录下,它需要生成三种文件
1、字段文件,命令方式为 列ID.dict
2、sort index文件,命令方式为 列ID.sortindex
3、字典列的meta信息,命令方式为 列ID.dictmeta
4、数据生成过程
请打开CarbonDataRDDFactory,找到loadCarbonData这个方法,方法里面包括了从load命令和从dataframe加载的两种方式,代码看起来是有点儿又长又臭的感觉。我们只关注loadDataFrame的方式就好。
def loadDataFrame(): Unit = { try { val rdd = dataFrame.get.rdd // 获取数据的位置 val nodeNumOfData = rdd.partitions.flatMap[String, Array[String]]{ p => DataLoadPartitionCoalescer.getPreferredLocs(rdd, p).map(_.host) }.distinct.size // 确保executor数量要和数据的节点数一样多 val nodes = DistributionUtil.ensureExecutorsByNumberAndGetNodeList(nodeNumOfData, sqlContext.sparkContext) val newRdd = new DataLoadCoalescedRDD[Row](rdd, nodes.toArray.distinct) // 生成数据文件 status = new NewDataFrameLoaderRDD(sqlContext.sparkContext, new DataLoadResultImpl(), carbonLoadModel, currentLoadCount, tableCreationTime, schemaLastUpdatedTime, newRdd).collect() } catch { case ex: Exception => LOGGER.error(ex, "load data frame failed") throw ex } }
打开NewDataFrameLoaderRDD类,查看internalCompute方法,这个方法的核心是这句话
new DataLoadExecutor().execute(model, loader.storeLocation, recordReaders.toArray)
打开DataLoadExecutor,execute方法里面的核心是DataLoadProcessBuilder的build方法,根据表不同的参数设置,DataLoadProcessBuilder的build过程会有一些不同
public AbstractDataLoadProcessorStep build(CarbonLoadModel loadModel, String storeLocation, CarbonIterator[] inputIterators) throws Exception { CarbonDataLoadConfiguration configuration = createConfiguration(loadModel, storeLocation); SortScopeOptions.SortScope sortScope = CarbonDataProcessorUtil.getSortScope(configuration); if (!configuration.isSortTable() || sortScope.equals(SortScopeOptions.SortScope.NO_SORT)) { // 没有排序列或者carbon.load.sort.scope设置为NO_SORT的 return buildInternalForNoSort(inputIterators, configuration); } else if (configuration.getBucketingInfo() != null) { // 设置了Bucket的表 return buildInternalForBucketing(inputIterators, configuration); } else if (sortScope.equals(SortScopeOptions.SortScope.BATCH_SORT)) { // carbon.load.sort.scope设置为BATCH_SORT return buildInternalForBatchSort(inputIterators, configuration); } else { return buildInternal(inputIterators, configuration); } }
下面仅介绍标准的导入过程buildInternal:
private AbstractDataLoadProcessorStep buildInternal(CarbonIterator[] inputIterators, CarbonDataLoadConfiguration configuration) { // 1. Reads the data input iterators and parses the data. AbstractDataLoadProcessorStep inputProcessorStep = new InputProcessorStepImpl(configuration, inputIterators); // 2. Converts the data like dictionary or non dictionary or complex objects depends on // data types and configurations. AbstractDataLoadProcessorStep converterProcessorStep = new DataConverterProcessorStepImpl(configuration, inputProcessorStep); // 3. Sorts the data by SortColumn AbstractDataLoadProcessorStep sortProcessorStep = new SortProcessorStepImpl(configuration, converterProcessorStep); // 4. Writes the sorted data in carbondata format. return new DataWriterProcessorStepImpl(configuration, sortProcessorStep); }
主要是分4个步骤:
1、读取数据,并进行格式转换,这一步骤是读取csv文件服务的,dataframe的数据格式都已经处理过了
2、根据字段的数据类型和配置,替换掉字典列的值;非字典列会被替换成byte数组
3、按照Sort列进行排序
4、把数据用Carbondata的格式输出
下面我们从第二步DataConverterProcessorStepImpl开始说起,在getIterator方法当中,会发现每一个CarbonRowBatch都要经过localConverter的convert方法转换,localConverter中只有RowConverterImpl一个转换器。
RowConverterImpl由很多的FieldConverter组成,在initialize方法中可以看到它是由FieldEncoderFactory的createFieldEncoder方法生成的。
public FieldConverter createFieldEncoder(DataField dataField, Cachecache, CarbonTableIdentifier carbonTableIdentifier, int index, String nullFormat, DictionaryClient client, Boolean useOnePass, String storePath, boolean tableInitialize, Map
从这段代码当中可以看出来,它是分成了几种类型的
1、维度类型,编码方式为Encoding.DIRECT_DICTIONARY的非复杂列,采用DirectDictionaryFieldConverterImpl (主要是TIMESTAMP和DATE类型),换算成值和基准时间的差值
2、维度类型,编码方式为Encoding.DICTIONARY的非复杂列,采用DictionaryFieldConverterImpl (非高基数的字段类型),把字段换成字典中的key(int类型)
3、维度类型,复杂列,采用ComplexFieldConverterImpl (复杂字段类型,Sturct和Array类型),把字段转成二进制
4、维度类型,高基数列,采用NonDictionaryFieldConverterImpl,原封不动,原来是啥样,现在还是啥样
5、指标类型,采用MeasureFieldConverterImpl (值类型,float、double、int、bigint、decimal等),原封不动,原来是啥样,现在还是啥样
第三步SortProcessorStepImpl,关键点在SorterFactory.createSorter是怎么实现的
public static Sorter createSorter(CarbonDataLoadConfiguration configuration, AtomicLong counter) { boolean offheapsort = Boolean.parseBoolean(CarbonProperties.getInstance() .getProperty(CarbonCommonConstants.ENABLE_UNSAFE_SORT, CarbonCommonConstants.ENABLE_UNSAFE_SORT_DEFAULT)); SortScopeOptions.SortScope sortScope = CarbonDataProcessorUtil.getSortScope(configuration); Sorter sorter; if (offheapsort) { if (configuration.getBucketingInfo() != null) { sorter = new UnsafeParallelReadMergeSorterWithBucketingImpl(configuration.getDataFields(), configuration.getBucketingInfo()); } else { sorter = new UnsafeParallelReadMergeSorterImpl(counter); } } else { if (configuration.getBucketingInfo() != null) { sorter = new ParallelReadMergeSorterWithBucketingImpl(counter, configuration.getBucketingInfo()); } else { sorter = new ParallelReadMergeSorterImpl(counter); } } if (sortScope.equals(SortScopeOptions.SortScope.BATCH_SORT)) { if (configuration.getBucketingInfo() == null) { sorter = new UnsafeBatchParallelReadMergeSorterImpl(counter); } else { LOGGER.warn( "Batch sort is not enabled in case of bucketing. Falling back to " + sorter.getClass() .getName()); } } return sorter; }
居然还可以使用堆外内存sort,设置enable.unsafe.sort为true就可以开启了。我们看默认的ParallelReadMergeSorterImpl吧。
超过100000条记录就要把数据排序,然后生成一个文件,文件数超过20个文件之后,就要做一次文件合并。
规则在NewRowComparator和NewRowComparatorForNormalDims当中
相关参数:
carbon.sort.size 100000
carbon.sort.intermediate.files.limit 20
到最后一步了,打开DataWriterProcessorStepImpl类,它是通过CarbonFactHandlerFactory.createCarbonFactHandler生成一个CarbonFactHandler,通过CarbonFactHandler的addDataToStore方法处理CarbonRow
addDataToStore的实现很简单,当row的数量达到一个blocklet的大小之后,就往线程池里提交一个异步的任务Producer进行处理
public void addDataToStore(CarbonRow row) throws CarbonDataWriterException { dataRows.add(row); this.entryCount++; // if entry count reaches to leaf node size then we are ready to write // this to leaf node file and update the intermediate files if (this.entryCount == this.blockletSize) { try { semaphore.acquire(); producerExecutorServiceTaskList.add( producerExecutorService.submit( new Producer(blockletDataHolder, dataRows, ++writerTaskSequenceCounter, false) ) ); blockletProcessingCount.incrementAndGet(); // set the entry count to zero processedDataCount += entryCount; LOGGER.info("Total Number Of records added to store: " + processedDataCount); dataRows = new ArrayList<>(this.blockletSize); this.entryCount = 0; } catch (InterruptedException e) { LOGGER.error(e, e.getMessage()); throw new CarbonDataWriterException(e.getMessage(), e); } } }
这里用到了生产者消费者的模式,Producer的处理是多线程的,Consumer是单线程的;Producer主要是负责数据的压缩,Consumer负责进行输出,数据的交换通过blockletDataHolder。
相关参数:
carbon.number.of.cores.while.loading 2 (Producer的线程数)
number.of.rows.per.blocklet.column.page 32000
文件生成主要包含以上过程,限于文章篇幅,下一章再继续接着写Carbondata的数据文件格式细节。
岑玉海
转载请注明出处,谢谢!